

SPEC NO. EL082049B ISSUE: MAR 14 1997 To;
COMPERIMATION SPECIFICATIONS
Product Type THE INTERFACE IC FOR TFT LCD PANEL
Model No. IR3Y26A
*This specifications contains 31 pages including the cover and appendix. If you have any objections, please contact us before issuing purchasing order.
CUSTOMERS ACCEPTANCE
DATE:
BY: PRESENTED
BY: J. Ohno T. OHNO Dept. General Manager
REVIEWED BY: REVIEWED BY: RE

- •Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- •When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - ·Instrumentation and measuring equipment
 - •Machine tools
 - •Audiovisual equipment
 - •Home appliances
 - •Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.

•Control and safety devices for airplanes, trains, automobiles, and other transportation equipment

- •Mainframe computers
- •Traffic control systems
- •Gas leak detectors and automatic cutoff devices
- •Rescue and security equipment
- •Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.

•Aerospace equipment

- •Communications equipment for trunk lines
- •Control equipment for the nuclear power industry
- •Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

•Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

1.	Description	••••	Page 2
2.	Terminal Name	••••	3
3.	Terminal Connections (TOP VIEW)	• • • • • • • • • • •	4
4.	Block Diagram	••••	5
5.	Description of terminals	••••	6
6.	Functional operation	••••	10
7.	Precautions	••••	12
8.	Absolute Maximum Ratings	••••	13
9.	Electrical Characteristics	•••••	14
10.	Application Circuit Example	•••••	25
11.	Package and Packing Specification	••••	26

,

-

1. Description

The Sharp IR3Y26A is a multi-functional IC for a TFT LCD panel adopting the source drivers operating at 5V.

This IC contains polarity inverting circuits, common voltage generating circuit, and gamma crrection circuits to meet the specific requirements of the LCD panels, and contains double channels of RGB inputs.

Applications:

LCD color television sets, LCD color displays, LCD color monitors etc..

Features:

(1) Low power dissipation. (140mW TYP.)

(2) Built-in double channels of RGB inputs.

(3) Built-in gamma correction circuits.

(4) Built-in polarity inverting circuits.

(5) Built-in common voltage generating circuit.

(6) Frequency characteristic 6.5MHz(TYP.)

* Not designed or rated as radiation hardened.

* Package material:

* Chip material and wafer substrate type:

* Number of pins and package type:

Plastic P type silicon 48-pin quad-flat package

* Process (Structure):

Bipolar

I R 3 Y 2 6 A

2. Terminal Name

Pin No.	Terminal Name	Pin No.	Terminal Name
1	N. C.	25	N. C.
2	SYNC SEP	26	GANNA O
3	COM ANP	27	GAMNA 2
4	COM OUT	28	GND
5	CONTRAST	29	R OUT
6	B IN 1	30	R DCDET
7	GND	31	GND
8	G IN 1	32	G OUT
9	R IN 1	33	G DCDET
10	VCC1	34	VCC2
11	N. C.	35	B OUT
12	N. C.	36	N. C.
13	B IN 2	37	B DCDET
14	G IN 2	38	SUB BRIGHT B
15	R IN 2	39	SUB BRIGHT R
16	H FIL IN	4 0	RGB AMP
17	REG OUT	41	BRIGHT
18	SW	4 2	SUB CONTRAST B
19	H FIL OUT	43	SUB CONTRAST R
20	N. C.	44	N. C.
21	N. C.	4 5	COM FRP
22	N. C.	4 6	FRP
23	N. C.	4 7	SYNC IN
24	N. C.	48	SYNC OUT

•

-

1 R 3 Y 2 6 A

I R 3 Y 2 6 A

Pin No.	Term. Name	voltage	Equivalent circuit	Description
2	SYNC SEP	2. 0V		The input terminal of the video signal or H FIL OU signal for the SYNC-separ tion circuit.
3	CON ANP	2. 1V		The DC voltage applied to this terminal adjusts the amplitude of the COM output. This terminal is preset inside the IC.
4	COM OUT		VCC2	The output terminal of th COM signal.
5	CONTRAST	2. 1V	VCC1	The DC voltage applied to this terminal adjusts the contrast of the RGB outpu signals. This terminal is preset inside the IC.
4	B IN 1 G IN 1 R IN 1 B IN 2 G IN 2 R IN 2	1. 9V		The input terminal of the analog RGB signals. These signals are required to be AC coupled.

6

I R 3 Y 2 6 A

		me voltage	Equivalent circuit	Description
$\begin{array}{ccc} 7, & 2 \\ & 3 \\ \end{array}$	GND			These terminals are ground
10	VCC1		· · · · · · · · · · · · · · · · · · ·	Connect to the parameter
16	H FIL I	N 2.0	VCC1	Connect to the power suppl The input terminal of the video signal for SYNC separation circuit. The impedance of this terminal is about a 12kΩ.
17	REG OUT	1. 2¥		The value of the resistor connected between this terminal and GND adjusts the width of the gate pulse.
18	SW		VCC1	The input terminal for the source selection signal. Give the "Low" level in case of the RGB IN 2 inputs, and give the "High" level or open in case of the RGB IN 1 inputs.
	H FIL OUT	4. OV		The output terminal of the video signal for SYNC-separation circuit.
26 (GAMMA O		VCC1	The DC voltage applied to this terminal adjusts 70 point. This terminal is pre-set inside the IC.

pin No.	Term. Name	voltage	Equivalent circuit	Description
27	GANNA 2	2. 1V		The DC voltage applied to this terminal adjusts the 72 point. This terminal is pre-set inside the IC.
2 9 3 2 3 5	R OUT G OUT B OUT	VCC1/2	VCC2	The output terminals of th RGB signals. The output circuits keep the DC voltage Vcc1/2.
3 0 3 3 3 7	R DCDET G DCDET B DCDET			These terminals are connected to the capacitor that smooth and hold the D voltage of the RGB output signals. Because of the high impedance, use low leakage current capacitor.
34	VCC2			Connect to the power supply for the RGB outputs.
38	SUB	2. 1V	VCC2	The DC voltage applied to
39	BRIGHT B SUB BRIGHT R			these terminals adjust the brightness of the R and B signals finely by moving the gamma correction curve. These terminals are pre-set inside the IC.
40	RGB AMP	2. 1V		The DC voltage applied to this terminal adjusts the amplitude (BLK-BLK)of the RGB output signals. This terminal is pre-set inside the IC.

Pin No.	Term. Nam	e Voltage	Equivalent circuit	Description
41	BRIGHT		VCC1	The DC voltage applied to this terminal adjusts the position of the gamma correction curve and the amplitude of the common output voltage.
4 2 4 3	SUB CON I SUB CON I	1		The DC voltage applied to these terminals finely adjust the contrast of the R and B signals. These terminals are pre-set inside the IC.
4 5	COM FRP			The input terminal for the switching signal of the COM output.
46	FRP			The input terminal for the inverting signal of the RGB outputs.
47	SYNC IN		VCC1	The input terminal for the horizontal synchronizing pulse. (Active Low)
48	SYNC OUT	0. 2V	VCC1	The output terminal for the synchronizing pulse separated by the SYNC separation circuit. The output is provided by an open collector circuit.

• RGB Inputs

The RGB inputs accept the analog signals. When giving the "High" level to the SW input or opening it, the R IN 1, G IN 1 and B IN 1 are valid, and when giving the "Low" level to it, the R IN 2, G IN 2 and B IN 2 are valid.
• H FILTER

This consists of LPF and buffer for SYNC-separation circuit. The input impedance of the H FIL IN terminal is about a 12kQ.

• Gamma correction

The output signals are corrected accrding to the characteristic of the LCD panel as shown in figure 1.

The pin 27 and 26 adjust the each relative position of the inflection $_{10}$, $_{12}$. The pin 32(bright) is able to adjust these positions at the same time.

• RGB outputs

The RGB outputs (pin 29, pin 32, pin 35) are inverted by the FRP signal applied to the pin 46 as shown in Figure 2.

The output circuits keep the DC voltage Vcc1/2.

The dynamic range is adjusted by the RGB AMPLITUDE terminal(pin 40).

7. Precautions * Power supply pin Ensure that pin 17 and pin 18 are at the lowest potential, and do not open them. Make sure that the voltage applied to the power supply pin must be as follows: $GND2 = GND1 \leq Vcc1 \leq Vcc2$ * White-balance adjustment The SUB BRIGHT B and R terminals(pin 30 and pin 31) are preseted inside the IC. When these preseted terminals are open, the white-balance could be lost by the deviation of the electronic components in the system. Therefore in someway, regulating the white-balance, is recommended. * RGB outputs amplitude(between the black level and the following inverted black level) Make the maximum amplitude of the RGB outputs below Vcc1-0. $4V_{P-P}$, (including the case that adjusted by the SUB BRIGHT and the RGB AMPLITUDE ADJUST terminals) * RGB outputs terminal and COMMON output terminal In case of connecting low impedance loads, because the consumption current of the Vcc2 terminal increase, pay attention to the maximum power dissipation of the package. * Input of the signal Synchronize all the input signals connected to the IC. * Bright control limit In case of varing the BRIGHT control voltage or GAMMA 0 control voltage, make the gamma 0 position be below 1V above the pedestal level. * Common Amplitude Adjust It is recommended not to supply COMMON AMPLITUDE ADJUST with a constant voltage but to adjust it one by one. The output amplitude of COMMON OUT has a variability of $1.55\pm0.3V_{P-P}$ when COMMON AMPLITUDE ADJUST is supplied with a voltage of 2.05V and BRIGHT is supplied with a voltage of 1.0V. It is afraid that the variability of luminance on the LCD display should increase at a constant COMMON AMPLITUDE ADJUST voltage, because both the output amplitude and the variability of COMMON OUT are amplitude, and a LCD module is supplied with them. *Output dynamic range Adjust RGB AMP(pin 40) to make the output dynamic range more than $3V_{P-P}$.

Parameter	Symbol	Conditions		Rating		Units
Supply voltage	$V_{cc1} - GND$			7		v
	$V_{cc}2 - GND$			10		v
Power dissipation	PD	Ta ≦ 25℃	1	580		mW
Derating ratio		Ta > 25t		4.64		m₩/℃
Operating	Topr	····		-30 ~	85	°
temperature range						
Storage	Tstg			-55 ~	150	°C
temperature range						
Each adjust	V _{IN}			GND		V
pins voltage				\sim Vcc1		
SYNC OUT output	VsD			10		V
strength voltage						
RGB input						V
signals voltage				Vcc1*1		
FRP input	······			GND		v
signal voltage			1	~Vcc1		
SYNC IN input				GND		V
signal voltage				~Vcc1		·
Operating supply v Parameter	Symbol	Conditions		Rating		Units
<u> </u>			2			
Operating supply	Vcc1-GND			4. $5 \sim 5$.		V
	Vcc2-GND			7.0~8.		V
voltage range	V _{cc} 2-GND Vcc2-Vcc1			7.0~8.		V
voltage range Recommended operati	V _{cc} 2-GND Vcc2-Vcc1 ng conditions	Conditions		$7.0\sim 8.$ ≥ 2.0		V V
voltage range	V _{cc} 2-GND Vcc2-Vcc1	Conditions	MIN	7.0~8.		V
voltage range Recommended operati Parameter RGB analog input	V _{cc} 2-GND Vcc2-Vcc1 ng conditions	Conditions	MIN 0	7.0~8. ≥2.0 Rating	0	V V
voltage range Recommended operati Parameter RGB analog input signals voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions		$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX	V V Units V _{P-P} *2
voltage range Recommended operati Parameter RGB analog input signals voltage H FIL IN input	V _{cc} 2-GND Vcc2-Vcc1 ng conditions Symbol	Conditions		7.0~8. ≥2.0 Rating TYP	0 MAX	V V Units
voltage range Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX	V V Units V _{P-P} *2 V _{P-P}
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions		$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX	V V Units V _{P-P} *2
voltage range <u>Recommended operati</u> Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8	V V Units V _{P-P} *2 V _{P-P}
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage FRP input	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX	V V Units V _{P-P} *2 V _{P-P}
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage FRP input "LOW" level voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8	V V Units V _{p-p} *2 V _{p-p} V V
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage FRP input "LOW" level voltage COM FRP input	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8	V V Units V _{P-P} *2 V _{P-P}
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input 'HI" level voltage FRP input 'LOW" level voltage COM FRP input 'HI" level voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8 0. 8	V V Units V _{P-P} *2 V _{P-P} V V V
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input 'HI" level voltage FRP input 'LOW" level voltage COM FRP input 'HI" level voltage COM FRP input	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8	V V Units V _{p-p} *2 V _{p-p} V V
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage FRP input "LOW" level voltage COM FRP input 'LOW" level voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0 2.0 2.0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8 0. 8	V V Units V _{p-p} *2 V _{p-p} *2 V V V V V
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input "HI" level voltage FRP input "LOW" level voltage COM FRP input 'HI" level voltage COM FRP input 'LOW" level voltage SYNC IN input	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8 0. 8	V V Units V _{P-P} *2 V _{P-P} V V V
Recommended operati Parameter RGB analog input signals voltage H FIL IN input signals voltage FRP input 'HI" level voltage FRP input 'LOW" level voltage COM FRP input 'HI" level voltage	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0 2.0 2.0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8 0. 8	V V Units V _{p-p} *2 V _{p-p} *2 V V V V V
	Vcc2-GND Vcc2-Vcc1 ng conditions Symbo1 vRGB _{1N}	Conditions	0 2.0 2.0	$7.0 \sim 8.$ ≥ 2.0 Rating TYP 0.714	0 MAX 0. 8 0. 8	V V Unit: V p - p? V p - p? V V V V V

I R 3 Y 2 6 A

	Unless otherwise Vcc1=5.0V,V	cc2=7.5V	Ta=25℃, SW2→a, SW3→0FF_S'	¥5→ON. S¥2	26→OFF	S₩27→0)FF.
	SW29 \rightarrow OFF, SW32 \rightarrow OFF, SW35 \rightarrow OFF, S					0121	, ,
	V5=2. 1V, $V41=1$. 7V, $V18=5$. 0V,						
	(B1), (G1), (R1), (B2), (G2), (R2) and (A)	=GND, SG2 applied to T	P45 and 1	[P46		
	SG1(5Vp-p) applied to TP47.	, (,					
No.	Parameter	symbol	Conditions	MIN	TYP	MAX	Unit
1	Current dissipation	Icc1			13.0	20.0	mA
2		Icc2	- , , , , , , , , , , , , , , , , , , ,		10.0	18.0	mA
3		V2	SW2→b	1.6	1.9	2.4	V
4	CON AMP terminal voltage	V3		1.7	2.1	2.5	V
5	CONTRAST terminal voltage	V5	S₩5→OFF	1.7	2.1	2.5	V
6	B IN1 terminal voltage	V6		1.6	1.9	2.4	V
7	G IN1 terminal voltage	V8		1.6	1.9	2.4	V
8	R IN1 terminal voltage	V9		1.6	1.9	2.4	V
9	B IN2 terminal voltage	V13		1.6	1.9	2.4	V
10	G IN2 terminal voltage	V14		1.6	1.9	2.4	V
11	R IN2 terminal voltage	V15		1.6	1.9	2.4	V
12	H FIL IN terminal voltage	V16		1.6	2.0	2.4	V
13	REG OUT terminal voltage	V17		1.0	1.2	1.5	V
14	H FIL OUT terminal voltage	V19	·	3.2	4.0	4.6	V
15	GAMMA 0 terminal voltage	V26		1.7	2.1	2.5	V
16	GANNA 2 terminal voltage	V27	······································	1.7	2.1	2.5	V
17	SUB BR B terminal voltage	V38		1.7	2.1	2.5	V
18	SUB BR R terminal voltage	V39		1.7	2.1	2.5	V
19	RGB AMP terminal voltage	V40		1.7	2.1	2.5	V
20	SUB CON B terminal voltage	V42		1.7	2.1	2.5	V
21	SUB CON R terminal voltage	V43		1.7	2.1	2.5	V
22	SYNC SEP input current	12	S₩2→b, TP2=3.0V	9.0	14.0	19.0	μA
23 .	B IN1 input current	I6.	TP47=5V, TP6=2. 0 V	-0.1	0	0.1	μ A
24	G IN1 input current	18	TP47=5V, TP8=2.0 V	-0.1	0	0.1	μA
25	R IN1 input current	- 19	TP47=5V, TP9=2.0 V	-0.1	0	0.1	μA
26	B IN2 input current	I13	TP47=5V, TP13=2.0 V	-0.1	0	0.1	<u>μA</u>
27 28	G IN2 input current R IN2 input current	I14	TP47=5V, TP14=2.0 V	-0.1	0	0.1	μA
28	SW"L" input current	I15 IL18	TP47=5V, TP15=2. 0 V V18=0V	-0.1	0	0.1	μA
30	SW"H" input current	IH18	V18=5V	-0.1	-0.5	-4.5 0.1	μA μA
31	BRIGHT input current	III0 I41	V41=0V	-0.1	-0.5	-4.5	μ <u>Α</u>
32	CON FRP"L" input current	IL45	V45=0V		-0.5	-4.5	<u>μ</u> Α
33	COM FRP"H" input current	IH45	V45=5V	-0.1	0.0	0.1	μΑ
34	FRP"L" input current	IL46	V46=0V		-0.5	-4.5	<u>μΑ</u>
35	FRP"H" input current	IH46	V46=5V	-0.1	0.0	0.1	μA
36	SYNC IN"L" input current	IL47	V47=0V		-0.5	-4.5	μA
37	SYNC IN"H" input current		V47=5V	-0.1	0	0.1	μ <u>μ</u> Α
38	COM ANP input impedance	Z3		35	60	100	kΩ
39	CONTRAST input impedance	Z5		13	20	40	kΩ
40	H FIL IN input impedance	Z16		8	12	18	<u>k</u> Ω
41	GAMMA 0 input impedance	Z26		35		100	<u>k</u> Ω

I R 3 Y 2 6 A

No.	Parameter	symbol	Conditions	XIN	TYP	MAX	Units
42	GANNA 2 input impedance	Z27		35	60	100	k۵
43	SUB BR B input impedance	Z38		35	60	100	k۵
44	SUB BR R input impedance	Z39		35	60	100	kΩ
45	RGB AMP input impedance	Z40		35	60	100	kΩ
46	SUB CON B input impedance	Z42		35	60	100	kΩ
47	SUB CON R input impedance	Z43		35	60	100	kΩ

•

.

-

No	. Parameter	symbo	1 Conditions	MIN	TYP	MAX	unit
48	Maximum gain	G мах	With SW26→ON, V5=3. 3V, V18=5. 0V, V26=3. 5V,	22	25	28	dB
			V41=1.7V and SG3 applied to B1, G1, R1, B2, G2			1	
			, R2, adjust the amplitude of $SG3(V_{1M})$ for				
			making the amplitude (BLK-WHT) of the non-				
			invert signal on TP32 2Vp-p. Then,				
			define the non-invert side of the	4 •			
			amplitudes(BLK-WHT) on TP29, TP32 and TP35			ĺ	
			as VROM1, VGOM1 and VBOM1. Similarly with				
			V18=0V, as v_{ROM2} , v_{GOM2} and v_{BOM2} .				
			$G_{MAX} = 20LOG(v_{ROM1}/v_{1M}), 20LOG(v_{ROM2}/v_{1M}),$				
			$20LOG(v_{GOM1}/v_{IM}), 20LOG(v_{GOM2}/v_{IM}),$				
			$20LOG(v_{BOM1}/v_{1M}), 20LOG(v_{BOM2}/v_{1M}).$				
49	Contrast	ΔGc	With SW26→ON, V5=1. 0V, V18=5. 0V, V26=3. 5V,	7	9	11	dB
	variable range		V41=1.7V and SG3(amplitude:V _{IM}) applied to	-		1 11	
			B1, G1, R1, B2, G2, R2. Then, define the non-				
			invert side of the amplitudes(BLK-WHT)				
			on TP29, TP32 and TP35 as v_{RON1} , v_{GON1} and				
			v_{BON1} . Similarly with V18=0V, the non-		ļ		
			invert side as v_{RON2} , v_{GON2} and v_{BON2} .				
			$\Delta G_{c}=20LOG(v_{ROM1}/v_{ROM1}), 20LOG(v_{ROM2}/v_{ROM2}),$				
			$20LOG(v_{GOM1}/v_{GON1}), 20LOG(v_{GOM2}/v_{GON2}),$				
			$20LOG(v_{BOM1}/v_{BON1}), 20LOG(v_{BOM2}/v_{BON2}).$				
50	Gain difference	ΔGI	With SW26→ON, V5=2. 1V, V18=5. 0V, V26=3. 5V,			±0.7	dB
	among inputs		V41=1.7V and SG3(amplitude:V _{IM}) applied to			-0.1	dD
			B1, G1, R1, B2, G2, R2. Then, define the non-				
			invert side of the amplitudes(BLK-WHT)				
			on TP29, TP32 and TP35 as v_{ROT1} , v_{GOT1} and				
			v_{BoT1} , the invert side of them as v_{ROT1A} ,				
			v_{GOT1A} and v_{BOT1A} . Similarly with V18=0V,		Í		
			non-invert side as v_{ROT2} , v_{GOT2} , v_{BOT2}				
			and invert side as V_{ROT2A} , V_{GOT2A} , V_{BOT2A} .		Į		-
			$\Delta G_{I} = 20LOG(v_{ROT2}/v_{ROT1}), 20LOG(v_{GOT2}/v_{GOT1}),$		Ì		
51	Gain difference	ΔGo	$\frac{20LOG(v_{BOT2}/v_{BOT1})}{\Delta G_0 = 20LOG(v_{GOT1}/v_{ROT1}), 20LOG(v_{BOT1}/v_{GOT1})}$			10 0	10
	among RGB	100	$20LOG(v_{\text{got}_1}/v_{\text{rot}_1}) \\ 20LOG(v_{\text{rot}_1}/v_{\text{rot}_1}) \\ 20LOG(v_{\text{rot}_2}/v_{\text{rot}_2}) $			±0.8	QR
	among hop		$20LOG(v_{ROT_1}/v_{BOT_1}) \cdot 20LOG(v_{COT_2}/v_{ROT_2}) - 20LOG(v_{BOT_2}/v_{COT_2}) \cdot 20LOG(v_{ROT_2}/v_{BOT_2})$				
52	Gain difference	ΔGINV				±0.7	dB
	between invert		$20L0G(v_{ROT_1A}/v_{ROT_1}), 20L0G(v_{ROT_2A}/v_{ROT_2})$			±0. ¶	ub
	and non-invert		$20LOG(v_{GOT_1A}/v_{GOT_1}), 20LOG(v_{GOT_2A}/v_{GOT_2})$				1
			$20LOG(v_{BOT_1A}/v_{BOT_1}), 20LOG(v_{BOT_2A}/v_{BOT_2})$				
53	Sub-Contrast	AGsc	Vith SW26→ON, V5=2. 1V, V26=3. 5V, V41=1. 7V,	±2	±3		dB
	variable range	1 1	and SG3 applied to B1, G1, R1, adjust the		-0		
	<u> </u>		amplitude of SG3 for making the amplitude	1			
			(BLK-WHT) of non-invert signal on TP32 2V.				ļ
1			Then, with SW42 \rightarrow ON, SW43 \rightarrow ON, V42=1. 0V,				
			43=1.0V. define the non-invert side of		1	1	
			43=1.0V, define the non-invert side of the amplitudes (BLK-WHT) on TP29 and				
		t	he amplitudes(BLK-WHT) on TP29 and				
		t 1					

55	RGB outputs maximum amplitude RGB outputs black level voltage	Vвм	$\Delta G_{sc} = 20LOG(v_{ROS1}/v_{ROT1}), 20LOG(v_{BOS1}/v_{BOT1}), 20LOG(v_{ROB1}/v_{ROT1}), 20LOG(v_{BOB1}/v_{BOT1}).$ With V40=1.7V, SW40-ON, measure the	4.0			
55	maximum amplitude RGB outputs black		$\frac{20LOG(v_{ROB1}/v_{ROT1})}{\text{With V40=1.7V, SW40}\rightarrow \text{ON, measure the}}$	4 0			
55	maximum amplitude RGB outputs black		With V40=1.7V,SW40→ON, measure the	4 0			ſ
55	maximum amplitude RGB outputs black		With V40=1.7V,SW40→ON, measure the	4 0			
55	RGB outputs black	437		1 7.0	4.5		Vp-p
55	RGB outputs black	A 37	amplitudes(BLK-BLK) of TP29, TP32 and TP35.				
56	-	ΔV _B	Define the non-invert black levels on			±200	mV
56	-		TP29, TP32 and TP35 as V _{RB} , V _{GB} and V _{BB} . The				
	difference		invert black levels as V_{RBA} , V_{GBA} , V_{BBA} .				
			$\Delta V_{B} = V_{RB} - V_{GB} , V_{GB} - V_{BB} , V_{BB} - V_{RB}$				
			$V_{RBA} - V_{GBA}$, $V_{GBA} - V_{BBA}$, $V_{BBA} - V_{RBA}$				
	Sub-brightness	ΔV _{BS}		+0 25	±0.50		v
	adjust variable	U • B 3	applied to B1, G1, R1, adjust the amplitude	-0.20	-0.00		
	_		of SG3 for making the amplitude(BLK-WHT)				
	range						
			of the non-invert signal on TP32 2V.				
			Then, define the non-invert side of seconde				
			$stage(a_2-GND)$ amplitudes on TP29 and TP35				
			as V_{R_2T} and V_{B_2T} . Similarly, invert side				
		i	as V_{R_2TA} and V_{B_2TA} . with SW38-ON, SW39-ON,				
			V38=1.0V, V39=1.0V, similarly as V _{R2M} , V _{B2M} ,				
			$V_{R_{2MA}}$ and $V_{B_{2MA}}$. With V38=3.2V, V39=3.2V,				1
			similarly as V_{R2N} , V_{B2N} , V_{R2NA} and V_{B2NA} .				1
			$\Delta V_{BS} = V_{R2T} - V_{R2M}, V_{R2TA} - V_{R2MA}, V_{B2T} - V_{B2M},$				l
			$V_{B2TA} - V_{B2MA}, V_{R2T} - V_{R2N}, V_{R2TA} - V_{R2NA},$				
			$V_{B2T} - V_{B2N}, V_{B2TA} - V_{B2NA}.$				
57	Peak limit	V _P	With $V41=2.5V$, SG3 applied to B1, G1, R1.	1 4	1.8	2.2	V
	characteristics		Measure the amplitudes(BLK-WHT)of non-		1.0	2.2	•
			invert signals on TP29, TP32 and TP35.		1		
58 1	RGB outs	Vc	Measure the average voltages of TP29, 2.3	1 2 5	027) V	
	DC voltage		TP32 and TP35.			, ,	
	Frequency	fc	With SW26 \rightarrow ON, SW29 \rightarrow ON, SW32 \rightarrow ON, SW35 \rightarrow ON,	5.0	6.5		MHz
	characteristic	10	V26=3. 5V, V41=1. 7V and SG5(f=100kHz)applied	0.0	0.0		
	characteristic		to R1, G1, B1, adjust the amplitude of SG5				
			for making the amplitude of sine wave part				
			of the non-invert signal on TP32 2V.				
			Increase the frequency on TP29, TP32 and	ĺ			
			TP35 until attenuate by 3dB from the				
			amplitude at the 100kHz.				
		CTrgb	With SW26→ON, V26=3.5V, V41=1.7V, TP46=0V,	40	50		dB
a	among RGB		and SG5(f=1MHz) applied to G1. Adjust the		1	l	
			amplitude of $SG5(V_1)$ for making the				
			amplitude of sine wave part of the non-				-
			invert signal on TP32 2V. Measure the				
			amplitudes of 1MHz component on TP29, TP32				
			and TP35. Calculate the amplitude ratios of	1		Ì	
			TP29 and TP35 to TP32. Similarly, with SG5				
		1	(f=1MHz.amplitude=vi) applied to B1,				
			measure the ratios of TP29 and TP32 to				
			TP35. Similarly, with SG5(f=1MHz,				
			amplitude=vi) applied to R1, measure the				
i			ratios of TP32 and TP35 to TP29.				

No.	Parameter	symbo	1 Conditions	NIN	TYP	MAX	units
61	Crosstalk	CT ₁₂	With SW26→ON. V26=3. 5V, V41=1. 7V, TP46=0V,	40	50		dB
	between RGB inputs		V18=5V and SG5(f=1MHz, amplitude=v;)				
	$(IN1 \rightarrow IN2)$		applied to B1, measure the amplitude of				
			1MHz component on TP35. Then with V18=0V,				
			measure the attenuation of 1NHz component				
			on TP35. Similarly, to G1 and R1, measure				
			one on TP32 and TP35.				
62	Crosstalk	CT ₂₁	With SW26→ON, V26=3. 5V, V41=1. 7V, TP46=0V,	40	50		dB
	between RGB inputs		V18=0V and SG5(f=1MHz, amplitude= v_1)				
			applied to B2. measure the amplitude of				
			1MHz component on TP35. Then with V18=5V,				
			measure the attenuation of 1MHz component				
			on TP35. Similarly, to G2 and R2, measure				
			one on TP32 and TP35.				
63	CON OUT	Vvm	With $V3=3$. 0V, $V41=1$. 0V,	5.0	5.4		V p - p
00	maximum amplitude	V V M	measure the amplitude on TP4.	5.0	J. 4		¶ p – p
64	CON OUT	חערטש	With SW3 \rightarrow ON, V3=2. 05V, V41=2. 0V,	1 95	1.55	1 95	v
ν4	amplitude		measure the amplitude on TP4.	1. 20	T. 00	1. 0]	¶ p - p
65	COM OUT	ΔVcl	With V3=1. 0V, V41=1. 0V,	7.5	8.2	9.0	V
00	amplitude	4101	measure the amplitude on TP4, define	1.0	0. 2	J. U	•
	adjustable range		it as V_{CN} . $\Delta V_{C1} = V_{CM} - V_{CN}$				
	(1)		(In case of the contrary phase, define				
			$\Delta VC1$ as follows: $\Delta V_{C1} = V_{CM} + V_{CN}$.)				
66	CON OUT	ΔVc2	With $V3=1.0V$, $V41=2.4V$, measure the amplitu-	95	10.8		V
	amplitude	1,02	de on TP4, define it as V_{cT} . $\Delta V_{c2} = V_{CM} - V_{cT}$	0.0	10.0		
	adjustable range		(In case of the contrary phase, define				
	(2)		$\Delta VC1$ as follows: $\Delta V_{c1} = V_{CM} + V_{CT}$.)				
67	RGB outputs	AVRGB	With SW40→ON, measure the differences of	1.5	2.2		V
		the amplitudes(BLK-BLK) on TP29, TP32 and	1.0			,	
	adjustable range		TP35, between $V40=1.7V$ and $V40=3.2V$.				
68	Gamma		With $V41=2.05V$ and $SG4$ applied to $B1, G1$		220		mV/
- 1	characteristic(1)		and R1, measure the slopes on TP29, TP32 and		220		
			TP35. ,				μs
69	Gamma	Δ72			50		mV/
03	characteristic(2)	012			50		
							µs
			Var12				
70	Gamma	Δ ₇ 1	473		220		mV/
	characteristic(3)	5/1	Δ12 72		220		μs
			71			1	μ3
71	Gamma	Δ70	Similarly with V41=1.60V, measure the		50		mV/
	characteristic(4)		slopes on TP29, TP32 and TP35.	[00		μs
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
72	Gamma	VA701	71		2.0		v
	characteristic(5)		VA701				
73	Gamma	V1712			1.5		V
	characteristic(6)	, = -	70 471				
			Δ10				

No.	Parameter	symbol	Conditions	MIN	TYP	MAX	unit
74	Common-Gamma tracking ratio	RT	With SW26→ON, SW27→ON, V3=2. 2V, V26=3. 5V, V27=3. 0V and SG3(0dB) applied to B1, G1, R1, changing V41=1. 9V to 2. 3V define the change of the amplitude between the BLACK level and the 7th state level(a0-a7) of the non-invert signals on TP29, TP32, TP35 as ΔV_B . Define the change of the amplitude on TP4 as ΔV_c . RT=($2\Delta V_B/\Delta V_c$)*($\Delta T 1/(\Delta T 1-\Delta T 2)$) Use the result of No. 68 and No. 69 for	2. 5	3.0	3.5	
			Δ_{71} and Δ_{72} .				
75	SW pin "HI"	V _{HSW}		2.0			V
	level input voltage					0.0	
76	-	VLSW				0.8	V
77	level input voltage COM FRP pin "HI"	VHCF		2.0			v
•••	level input voltage			2.0			'
78		VLCF				0.8	v
_	level input voltage						
79	FRP pin "HI"	V _{HF}		2.0			V
-	level input voltage						
30	FRP pin "LOW"	VLF				0.8	V
	level input voltage						
81	SYNC IN pin "HI"	V _{HS}		2.0			V
	level input voltage						
32	SYNC IN pin "LOW"	Vis				0.8	V
	level input voltage	·					
33	Sync separator in.		With SW2→b, measure the input current on		21	30	μA
	sensitivity		TP2 that causes TP48 to change from "L" to "H".				
34	current Sync sep. output		H. Measure the voltage on TP48		0.2	0.5	v
94	ON-state voltage	VON	acasule the voltage on 1140		0. 2	0.0	
35	sync sep. output	Isl	With SW2→b and TP48=10V, drawing the 40µA			1.0	μA
	OFF-state leakage		current from TP2 , measure the current from				
	current		TP48 to pin 48.				
36	H FIL OUT gain	Ghf	With SG1(0.286V _{P-P})applied to (A), measure	1. 0	2.3		dB
			the voltage on TP19 for v_{hf} .				
_			$G_{h f} = 20LOG(v_{h f}/0.286)$		0.0		
7	Sync separator		With $SG1(0.286V_{p-p})$ applied to (A),		0.6		μs
	output propagation		measure the propagation delay time.		1 0		
	delay time	tplh			1.0		μs
8	Sync separator	(SY) tihl	With SG1(0.286V _{P-P})applied to (A),		0.2		₽S
	output fall time		measure the fall time and the rise time		0. 2		μə
	output rise time		on TP48		0.5		₽S
					0.0		ل م
		(SY)					

No.	Parameter	symbo	l Conditions	NIN	TYP	MAX	units
89	RGB outputs	tphl	With SW26→ON, V18=5V, V26=3.5V, V41=1.7V, and		0.1		μs
	propagation delay	(RGB)	SG6 applied to G1, adjust the amplitude of				
	time	tplh	SG6 for making the amplitude (BLK-WHT) of		0.1		μs
		(RGB)	the non-invert signal on TP21 2V, define				
			it as v1.				
90	RGB outputs	tint	Measure the delay time from G1 to TP32, and		0.2		μs
	fall time	(RGB)	the fall time and rise time on TP32.				
	rise time	tilH	Similarly, measure the delay time from		0.2		μs
		(RGB)	B1 and R1 to TP29 and TP35 and the fall				
			time and the rise time on TP29 and TP35.				
			Similarly with V18=OV, measure				
			delay time, fall time and rise time from				
			B2, G2 and R2 to TP29, TP32 and TP35.				ļ
91	FRP square wave	tphi	Measure the propagation delay times from		0.1		µs
	propagation delay	(FRP)	TP46 to TP29, TP32 and TP35.				
		tplh			0.1		μs
		(FRP)					
92	FRP square wave	tinl	Measure the fall times and rise times of		0.1		µs
	rise time	(FRP)	output signals on TP29, TP32 and TP35.				
	fall time	tilH			0.1		µs
		(FRP)					
93	COM output	tphl	Measure the propagation delay time from		0.1		µs
	propagation	(СОМ)	TP45 to TP4.				
		t _{PLH}			0.1		µs
		(COM)					
94	COM output	ttHL	Measure the rise time and fall time of		0.1		μs
	rise time	(COM)	TP4.				
	fall time	ttLH			0.1		μs
~	0.1	(COM)			0.1		
95	SW propagation		With SW26→ON, V18=5V, V26=3. 5V, V41=1. 7V,		0.1		μs
	delay time		SG6 applied to B1, G1, R1, adjust the				
		tplh	amplitude of SG6 for making the amplitude		0.1		µS
0.0	0.	(SW)	(BLK-WHT) of the non-invert signal on				
96	SW .		TP32 2V. Then with SG7 applied to TP8.		0.1		µs ⊭
	rise time		observe the waveform on SG7, TP29, TP32 and				
	fall time	tilH	TP35.		0.1		μs
		(SW)					

I R 3 Y 2 6 A

I R 3 Y 2 6 A

aluminum bag	(lbag/case)	
Desiccant	Silica gel	Drying of device
P P band	Polypropylene (3pcs)	Device tray fixing
Inner case	Card board (800devices/case)	Packaging of device
Label	Paper .	Indicates part number,
		quantity and date of manufacture
Outer case	Cardboard -	Outer packing of device case

(Devices shall be placed into a tray in the same direction.)

3-2. Outline dimension of tray

Refer to attached drawing

4. Precausion For Unpacking

- (1) Unpacking should be done on the stand as well as human body treated with anti-ESD.
- (2) Conductive treatment or anti-ESD treatment is given to a dray. Use the equivalent tray, if it is changed to another one.

5. Surface Mount Conditions

Please perform the following conditions when mounting ICs not to deteriorate IC quality.

5-1. Soldering conditions (The following conditions are valid only for one time soldering.)

Mounting Method	Temperature and Duration	Measurement Point		
Reflow soldering	Peak temperature of 240°C,	IC surface		
(air)	duration less than 15 seconds			
	above 230℃, temperature			
	increase rate of $1\sim4^{\circ}C$ /second			
Solder dipping	245℃ or less, duration less	Solder bath		
	than 3 seconds/dip, total of			
	5 seconds			
Vapor phase	215℃ or less, duration less	Steam		
solderring	than 40 seconds above $200^\circ\!\!C$			
Manual soldering	260℃ or less, duration less	IC outer lead surface		
(soldering iron)	than 10 seconds			

- 5-2. Conditions for removal of residual flux
 - (1) Ultrasonic washing power : 25 Watts/liter or less
 - (2) Washing time
- : Total 1 minute maximum
- (3) Solvent temperature : 15∼40°C

ļ						
名称			リード仕上	TIN-LEAD	備考	プラスチックパッケージ外形寸法は、パリを含まないものとする。
NAME	QFP48-P	-1010		•		Plastic body dimensions do not include burr
			単位			of resin.
DRAWI	NG NO.	AA873	B UNIT	$\mathbf{m}\mathbf{m}$		

