

PREPARED BY:	DATE		SPEC No. LD-19201A
		SHARP	FILE No.
APPROVED BY :	DATE		ISSUE : Feb. 1. 2007
		LIGHTLE LYGUYD CDWGGW DICDLAY CDGWD	PAGE: 26pages
		MOBILE LIQUID CRYSTAL DISPLAY GROUP	APPLICABLE GROUP
		SHARP CORPORATION SPECIFICATION	MOBILE LIQUID CRYSTAL DISPLAY
		SPECIFICATION	GROUP

DEVICE SPECIFICATION FOR

TFT-LCD Module MODEL No. LQ123K1LG03

These parts have corresponded with the RoHS directive.

☐ CUSTOMER'S APPROVAL	
DATE	
	PRESENTED
BY	ВУ
	T. NAKA

Mika

Division deputy general manager of Mobile LCD design center ENGINEERING DEPARTMENT V MOBILE LCD DESIGN CENTER MOBILE LIQUID CRYSTAL DISPLAY GROUP I SHARP CORPORATION

RECORDS OF REVISION

LQ123K1LG03

SPEC No.	DATE	REVISED		SUMMARY)TE
		No.	PAGE			
LD-19201A	Feb.1.2007	-	-	-	1 st	Issu
		1				
		1				
		1				
						
						
4						
		1				
		1				
			<u> </u>			
			 			
			<u> </u>			
		ļ	ļ			

Global LCD Panel Exchange Center

LD19201A-1

Ι.	Application
	This specification applies to the color 12.3 dual-VGA TFT-LCD module LQ123K1LG03.

- These specification sheets are the proprietary product of SHARP CORPORATION("SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- The device listed in this technical literature was designed and manufactured for use in OA equipment.
- OIn case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- ©Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment(trunk lines), nuclear power control equipment and medical or other equipment for life support.
- ©SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.
- ©Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, inveter circuit, power supply circuit and a backlight unit. Graphics and texts can be displayed on a 1280 \times RGB \times 480 dots panel with about 16 million colors by using LVDS (Low Voltage Differential Signaling) system for interface and supplying +3.3V DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

The TFT-LCD panel used for this module is a higher-color-saturation type color filter (NTSC 72%). Therefore, high-brightness and high-contrast image, which is suitable for the multimedia use, can be obtained by using this module. Optimum viewing direction is 6 o'clock.

And in order to improve the response time of LCD, this module applies the O/S (Over Shoot) driving technology for the control circuit.

Backlight-driving DC/AC inverter is built in this module.

3. Outline specification.

Parameter	Specifications	Unit
Display size	31.242 (12.3") Diagonal	cm
Active area	291.84 (H) × 109.44 (V)	mm
Pixel format	1280 (H) × 480 (V)	pixel
	(1 pixel=R+G+B dots)	-
Aspect ratio	8:3	
Pixel pitch	0.228 (H) × 0.228 (V)	mm
Pixel configuration	R,G,B vertical stripe	-
Display mode	Normally white	-
Unit outline dimensions	312.4 (W) × 130.4 (H) × 26.4 (D)	mm
Mass	530 ± 40	g
Surface treatment	Anti-glare and hard-coating 3H	-

Outline dimensions is shown in Fig.1

4. Input Terminals

Global LCD Panel Exchange Center

4-1. TFT-LCD panel driving

CN1 (LVDS signals and +3.3V DC power supply)

: DF14H-20P-1.25H (56) [HIROSE ELECTRIC Co.,Ltd] Used connector

Corresponding connector: DF14-20S-1.25C (connector) [HIROSE ELECTRIC Co.,Ltd]

DF14-2628SCFA(terminal) [HIROSE ELECTRIC Co.,Ltd]

: Type with built-in control IC (THC63LVDF84A[Thine] equivalent device) Used LVDS receiver

Corresponding LVDS transmitter: THC63LVDM83R[Thine] or equivalent device

Pin No.	Symbol	Function	Remark
1	V_{CC}	+3.3V power supply	
2	V_{CC}	+3.3V power supply	
3	GND	GND	
4	GND	GND	
5	RXIN0-	Receiver signal, CH0 (—)	LVDS
6	RXIN0+	Receiver signal, CH0 (+)	LVDS
7	GND	GND	
8	RXIN1-	Receiver signal, CH1 (—)	LVDS
9	RXIN1+	Receiver signal, CH1 (+)	LVDS
10	GND	GND	
11	RXIN2-	Receiver signal, CH2 (—)	LVDS
12	RXIN2+	Receiver signal, CH2 (+)	LVDS
13	GND	GND	
14	RXCLK IN-	Receiver signal, CK (-)	LVDS
15	RXCLK IN+	Receiver signal, CK (+)	LVDS
16	GND	GND	
17	RXIN3-	Receiver signal, CH3 (-)	LVDS
18	RXIN3+	Receiver signal, CH3 (+)	LVDS
19	RL/UD	Horizontal/Vertical display mode select signal	[Note1]
20	SELLVDS	SELLVDS	[Note2]

[Note 1]

RL/UD = Low or Open

RL/UD = High

[Note 2] Relation between LVDS signals and actual data shows below section (4-4)

4-2. Inveter for backlight driving

CN2 (+12.0V DC power supply)

Used connector : S6B-ZR-SM4A-TF(LF)(SN) [J.S.T. Mfg.Co.,Ltd]

Corresponding connector : ZHR-6 [J.S.T. Mfg.Co.,Ltd]

Pin No.	Symbol	Function
1	VDD	+12.0V power supply
2	VDD	+12.0V power supply
3	VDD	+12.0V power supply
4	GND	GND
5	GND	GND
6	Vdim	Dimming

4-3. Backlight driving (Reference)

Used connector : BHR-02(8.0)VS-1N [J.S.T. Mfg.Co.,Ltd]

Corresponding connector: SM02(8.0)B-BHS-1R-TB [J.S.T. Mfg.Co.,Ltd]

D. M	0 1 1	T:	Color of cable		
Pin No. Symbol		Function	CN A	CN B	
1	$ m V_{HIGH}$	Power supply for lamp (High voltage side)	Pink	White	
2	$ m V_{LOW}$	Power supply for lamp (Low voltage side)	White	Gray	

The backlight system is an edge-lighting type with double CCFT (Cold Cathode Fluorescent Tube).

The characteristics of single lamp are shown in the following table.

Because the lamp is article of consumption, it is the reference value. It is not the one to secure this value.

Parameter	Min.	Typ.	Max.	Unit	Remark
Lamp life time	50000 (Lamp unit)		1	Н	[Note1] [Note2]
	- (7)	20000 (LCD module)	_	11	[1002]

[Note1] Lamp life time is defined as the time when the center brightness of LCD module becomes 50% of the original value under the condition of Ta= 25° C and IL=6.0mArms.

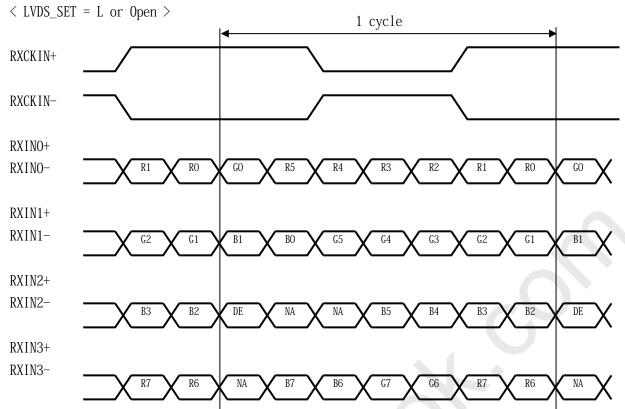
[Note2] Above value is applicable when lamp (the longest side of LCD module) is placed horizontally. Lamp lifetime may vary if lamp (the longest side of LCD module) is placed vertically due to change of mercury density inside the lamp.

[Attention] In case of operating under lower temp environment, the lamp exhaustion is accelerated and the brightness becomes lower. Especially, please avoid continuous operation under lower temp environment.

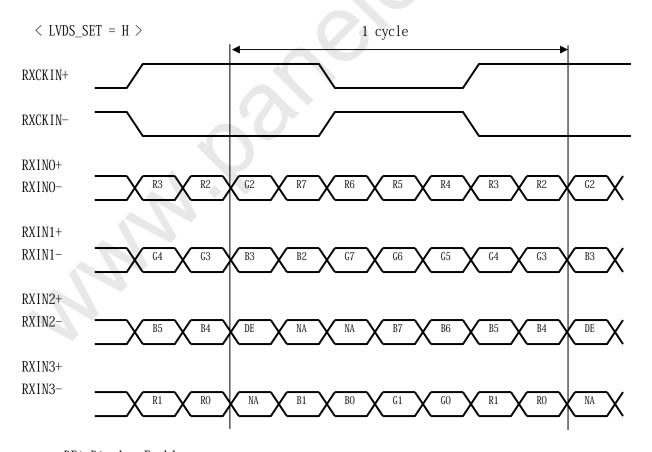
(Continuous operating for around 1 month under lower temp condition may reduce the brightness to a half of the original brightness.)

In case of such usage under lower temp environment, periodical lamp exchange is recommended.

4-4 Data Mapping


1) 8 bit input

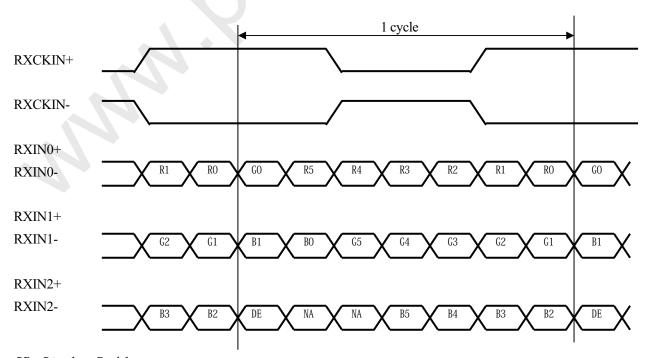
 $[Note2]\ pin\ assignment\ with\ LVDS_SET\ pin\ (Thine:THC63LVDM83R)$


Transmitter		20pin LVDS_SET		
Pin No	Data	=L (GND) or Open	=H (3.3V)	
51	TA0	R0 (LSB)	R2	
52	TA1	R1	R3	
54	TA2	R2	R4	
55	TA3	R3	R5	
56	TA4	R4	R6	
3	TA5	R5	R7 (MSB)	
4	TA6	G0 (LSB)	G2	
6	TB0	G1	G3	
7	TB1	G2	G4	
11	TB2	G3	G5	
12	TB3	G4	G6	
14	TB4	G5	G7 (MSB)	
15	TB5	B0 (LSB)	B2	
19	TB6	B1	B3	
20	TC0	B2	B4	
22	TC1	В3	B5	
23	TC2	B4	B6	
24	TC3	B5	B7 (MSB)	
27	TC4	(NA)	(NA)	
28	TC5	(NA)	(NA)	
30	TC6	DE	DE	
50	TD0	R6	R0 (LSB)	
2	TD1	R7 (MSB)	R1	
8	TD2	G6	G0 (LSB)	
10	TD3	G7 (MSB)	G1	
16	TD4	B6	B0 (LSB)	
18	TD5	B7 (MSB)	B1	
25	TD6	(NA)	(NA)	

Global LCD Panel Exchange Center

LD19201A-6

DE: Display Enable NA: Not Available


DE: Display Enable NA: Not Available

Global LCD Panel Exchange Center

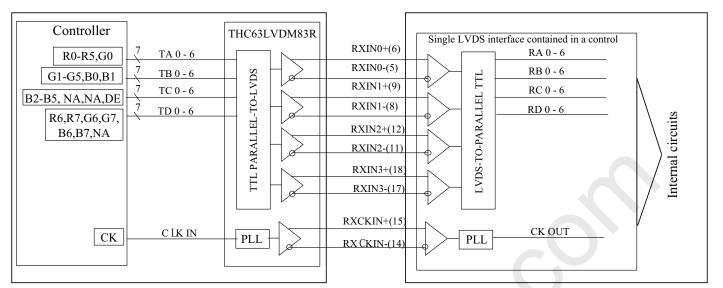
2) 6 bit input [Note2] pin assignment with LVDS_SET pin (Thine:THC63LVDM83R)

Transmitter		20pin LVDS_SET	
Pin No	Data	=L (GND) or Open	=H (3.3V)
51	TA0	_	R0 (LSB)
52	TA1	_	R1
54	TA2	_	R2
55	TA3	_	R3
56	TA4	_	R4
3	TA5	_	R5 (MSB)
4	TA6	_	G0 (LSB)
6	TB0	_	G1
7	TB1	_	G2
11	TB2	_	G3
12	TB3	_	G4
14	TB4	_	G5 (MSB)
15	TB5	_	B0 (LSB)
19	TB6	_	B1
20	TC0	_	B2
22	TC1	_	B3
23	TC2	_	B4
24	TC3	_	B5 (MSB)
27	TC4	_	(NA)
28	TC5	-	(NA)
30	TC6	-	DE
50	TD0		GND
2	TD1	- GND	
8	TD2	—	GND
10	TD3		GND
16	TD4		GND
18	TD5	_	GND
25	TD6		(NA)

DE: Display Enable NA: Not Available

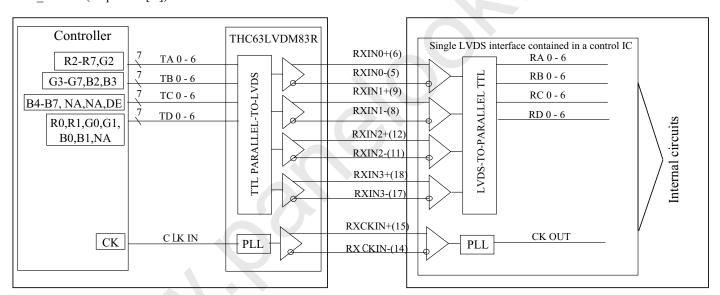
4-5 Interface block diagram

Global LCD Panel Exchange Center

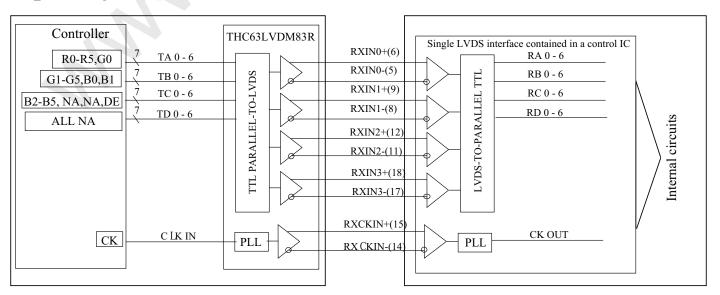

LD-19201A-8

(Computer side)

(TFT-LCD side)


①8Bit Mode

LVDS SET=L (20 pin=GND or OPEN)


28Bit Mode

LVDS_SET=H (20 pin=3.3[V])

36Bit Mode

LVDS_SET=H (20 pin=3.3[V])

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Pin name	Ratings	Unit	Remark
Supply voltage (LCD)	V_{cc}		Vcc	-0.3 to +4.0	V	[Note1,2]
Supply voltage (Inverter)	V_{DD}		VDD	0 to 16	V	
Input voltage	V_{I1}	Ta=25 °C	RXINi-/+(i=0,1,2,3)	-0.3 to Vcc+0.3	V	
	V 11		RXCLK IN-/+	-0.5 to VCC+0.5	v	[Note1]
	V_{I2}		RL/UD,SELLVDS	-0.3 to Vcc+0.3	V	
Storage temperature	T_{STG}	-	-	-30 to +75	°C	
Operating temperature	Topa	Surroundings	-	0 to +75	°C	[Note1,3]
				(panel surface)		

[Note1] Humidity: 95%RH Max. at Ta= $<40^{\circ}$ C.

Maximum wet-bulb temperature at 39°C or less at Ta> 40°C . No condensation.

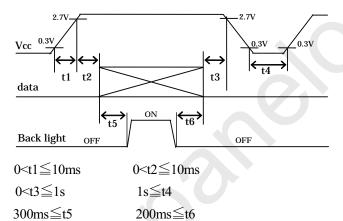
[Note 2] Please use the one of 3A or more in current capacity about the power-supply voltage.

[Note3] When used on condition of Operating temperature [65°C \leq T_{OPA}<75°C], degradation of display grace, such as screen stain etc, may be caused.

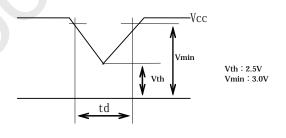
6. Electrical Characteristics

6-1.TFT-LCD panel driving

Global LCD Panel Exchange Center


Ta=+25 °C

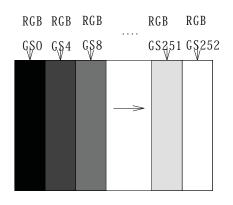
Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Supply voltage		V_{cc}	+3.0	+3.3	+3.6	V	[Note3]
Current dissipation	Vcc=+3.3V	I_{cc}	-	450	530	mA	[Note4]
LVDS Input voltage range	LVDS signal	V_{L}	0	-	2.4	V	
Permissive input ripple voltage		V_{RP}	-	-	100	mV _{p-p}	Vcc=+3.3V
Differential input	High	V_{TH}	1	-	V _{CM} +100	mV	V _{CM} =1.2V
Threshold voltage	Low	V_{TL}	V_{CM} -100	ı	ı	mV	[Note1]
Input voltage	High	$V_{ m IH}$	2.1	-	-		[Note2]
mput voltage	Low	V_{IL}	-	-	0.8	V	[110102]
Input current(High)	High	I_{OH}	-	ı	400	uA	VI2=+3.3V [Note2]
Input current(Low)	Low	I_{OL}	-10.0	ı	10.0	uA	VI2=0V [Note2]
Input impedance (Differential input)		R _T	-	100	-	Ω	[Note2]


[Note1] V_{CM} : Common mode voltage of LVDS driver

[Notel2]RL/UD,SELLVDS

[Note3]On-off conditions for supply voltage

Vcc-dip conditions


- $\begin{array}{l} \text{1) Vth} \, \leqq \, \text{Vcc} \, < \, \text{Vmin} \\ \text{td} \, \, \leqq \, \text{10ms} \end{array}$
- 2) Vcc<Vth

Vcc-dip conditions should also follow the On-off conditions for supply voltage

It is recommended to consider some timing difference between LVDS input and Backlight input as shown above.

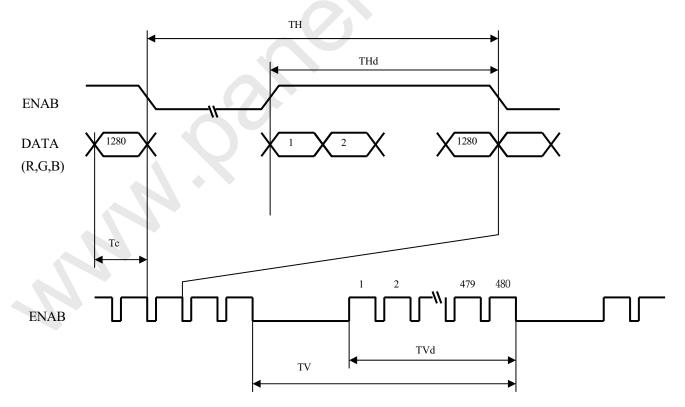
If the Backlight lights on before LCD starting, or if the Backlight is kept on after LCD stopping, the screen may look white for a moment or abnormal image may be displayed. This is caused by variation in output signal from timing generator at LVDS input on or off. It does not cause the damage to the LCD module

[Note 4] Typical current situation : 253-gray-bar pattern. $(Vcc=+3.3V,fck=53.172MHz,Ta=25\,^{\circ}C)$ The explanation of each gray scale is described below section 8

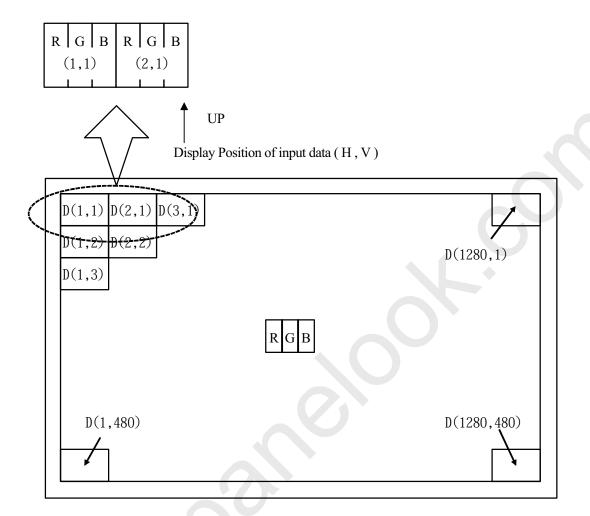
6-2. Backlight driving

The backlight system is an edge-lighting type with double CCFT (Cold Cathode Fluorescent Tube).

(It is usually required to measure under the following condition.Ta=25°C)


Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Supply voltage	V_{DD}	10.8	12.0	13.2	V	
Current dissipation	I_{DD}	-	1.1	1.65	A	High luminance
Dimming voltage	V_{dim}	0		VDD	V	0 to 0.6V : Standard luminance
Diffilling voltage	V dim	0	_	עשיי	·	2.5V to VDD : High luminance
Output current	Iout1,2	5.5	6.0	6.5	mArms	Standard luminance
Output current	10111,2	6.5	7.0	7.5	III/AIIIIS	High luminance
frequency	F	45	50	55	kHz	

7. Timing Characteristics of input signals


7-1. Timing characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Frequency	1/T _c	40	53.172	56	MHz	
Horizontal period	T_{H}	1420	1688	1895	clock	
		25.4	31.746	47.4	μs	
Horizontal period (High)	T_{Hd}	1280	1280	1280	clock	
Vertical period	T_{V}	487	525	575	line	[Note1]
		-	16.7	-	ms	
Vertical period (High)	T_{Vd}	480	480	480	line	

 $[Note1] \quad In \ case \ of \ lower \ frequency, \ the \ deterioration \ of \ display \ quality, \ flicker \ etc., may \ be \ occurred.$

7-2. Input Data Signals and Display Position on the screen Graphics and texts can be displayed on a 1280 $\, imes\,$ RGB $\, imes\,$ 480 dots panel with 16-million-color by supplying 24 bit data signal (8bit/color [253 gray scales] \times 3).

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

8-1. 8bit input

8-	-1. 8bit in	put																								
													Data	sign	al											
	Colors & Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	В3	В4	B5	В6	В7
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1
В	Green	_	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic (Cyan	_	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1
Color	Red	_	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	_	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1
	Yellow	_	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scal	仓	V				`	V							`	V								L			
e of]	Û	V				`	l							`	l l							`	<u>ا</u>			
Red	Brighter	GS250	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS251	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS252	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gr	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay S	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	Û	V				`	L							`	V								L			
Gray Scale of Green	Û	V					<u>ا</u>								ν							_	ν <u> </u>			
reen	Brighter	GS250	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Û	GS251	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS252	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ay S	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Scale of Blue	Û	\					ν				V															
of B	Û	+	₩								ν <u> </u>							`	ν <u> </u>			\dashv				
lue	Brighter	GS250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1
	Û	GS251	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1
	Blue	GS252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1

^{0:} Low level voltage,

Each basic color can be displayed in 253 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, about 16-million-color display can be achieved on the screen.

^{1 :} High level voltage.

X:Don't care.

8-2 6bit input

0-2	1	Data signal																		
	Colors &	Gray																		
	Gray scale	Scale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	В3	B4	B5
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
В	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic Color	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Colc	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
ď	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ìray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scal	仓	V			`	L						1					`	V		
Gray Scale of Red	Û	↓			`	ν <u> </u>						l .					`	ν <u> </u>		
Red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gra	Û	GS1	0	0	0	0	0		1	0	0	0	0	0	0	0	0	0	0	0
ıy Sc	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ale c	Û Ţ	→				l l						 						 		
Gray Scale of Green	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
en	₽ Updates	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gra	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
y Sce	仓	V				ν						ν 						ν		
Gray Scale of Blue	Û	\			,	L			*						,	L				
[Blu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
е	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

0: Low level voltage,

1: High level voltage.

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

9. Optical Characteristics 9. Optical Characteristics

Ta=25℃,	Vcc =	=+3.3\
---------	-------	--------

Para	ameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ 21, θ 22		55	65	-	Deg.	
angle	Vertical	θ11	CR≧10	40	50	-	Deg.	
range	Vertical	θ 12		50	60	-	Deg.	
Contrast ratio		C R	Optimum viewing angle	250	400	-	1	[Note2,4]
Response	gray scale	τ		-	10	-	ms	[Note3(Condition 1),4,5]
time	black and white	τ d+ τ r		-	35	-	ms	[Note3(Condition 2),4,5]
Chrom	aticity of	X		0.283	0.313	0.343	-	
W	hite //	у		0.299	0.329	0.359	-	
Chrom	nromaticity of x			0.618	0.648	0.678	-	
F	Red	у		0.306	0.336	0.366	-	[Note4]
Chrom	aticity of	X	$\theta = 0^{\circ}$	0.253	0.283	0.313	-	[Note4]
G	reen	у		0.582	0.612	0.642	-	
Chrom	aticity of	X		0.114	0.144	0.174	-	
Blue		у		0.052	0.082	0.112	-	
Luminance of white		Y_L		260	330		cd/m ²	[Note4]
White Uniformity		δw		_	-	1.33	_	[Note5]

^{*}The measurement shall be executed 30 minutes after lighting at rating.

The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.2 below.

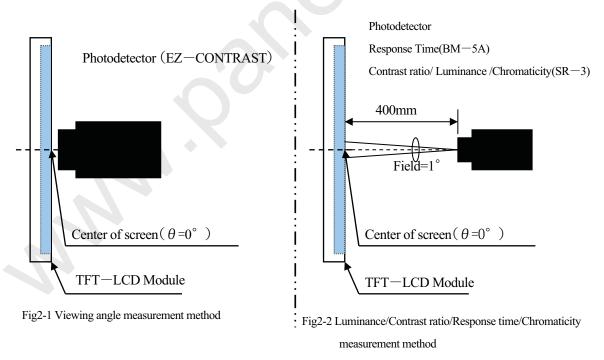
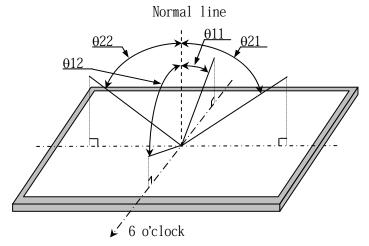



Fig2 Optical characteristics measurement method

[Note1] Definitions of viewing angle range:

Global LCD Panel Exchange Center

[Note2]Definition of contrast ratio:

The contrast ratio is defined as the following.

Contrast Ratio (CR) =Luminance (brightness) with all pixels white

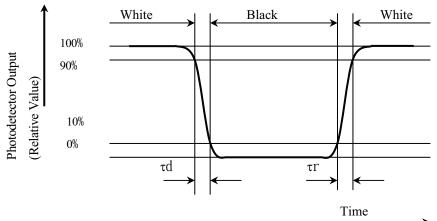
Luminance (brightness) with all pixels black

[Note3] Definition of response time:

<Condition 1 : > Definition by gray scal

The response time is defined as the following figure and shall be measured by switching the input signal for nine kinds of gray scales (GS0,32,64,96,128,160,192,224,255) and nine kinds of scales gray signal. (GS0,32,64,96,128,160,192,224,255)

(Panel surface temperature:


	GS0	GS32	GS64	GS96	GS128	GS160	GS192	GS224	GS255
GS0		_ τ r:0−32	τ r:0−64	τ r:0−96	τ r:0−128	τ r:0−160	τ r:0−192	τ r:0−224	τ r:0−255
GS32	τ d:32-0		_ τ r:32−64	τ r:32-96	τ r:32−128	τ r:32−160	τ r:32−192	τ r:32−224	τ r:32-255
GS64	τ d:64-0	τ d:64−32		τ r:64−96	τ r:64−128	τ r:64−160	τ r:64−192	τ r:64−224	τ r:64-255
GS96	τ d:96−0	τ d:96−32	τ d:96-64		_τ r:96−128	τ r:96−160	τ r:96−192	τ r:96−224	τ r:96-255
GS128	τ d:128-0	τ d:128-32	τ d:128-64	τ d:128-96		τ r:128−160	τ r:128−192	τ r:128−224	τ r:128-255
GS160	τ d:160−0	τ d:160−32∢	τ d:160−64	τ d:160−96	τ d:160−128		τ r:160−192	τ r:160−224	τ r:160-255
GS192	τ d:192-0	τ d:192-32	τ d:196−64	τ d:196−96	τ d:196-128	τ d:196-160		τ r:192−224	τ r:192-255
GS224	τ d:224-0	τ d:224-32	τ d:224-64	τ d:224-96	τ d:224-128	τ d:224-160	τ d:224-192		τ r:224-255
GS255	τ d:255−0	τ d:255-32	τ d:255-64	τ d:255−96	τ d:255-128	τ d:255-160	τ d:255−192	τ d:255−224	

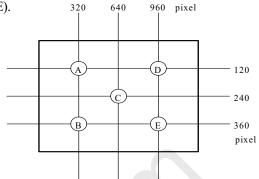
 τ *:x-y... Switching time from a option gray scale (x) to other option gray scale (y)

$$\tau = \{ \Sigma (\tau \text{ r:x-y}) + \Sigma (\tau \text{ d:x-y}) \} /72$$

<Condition 2 :> Definition by black and white

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Global LCD Panel Exchange Center


LD19201A-17

[Note4] This shall be measured at center of the screen.

[Note5] Definition of white uniformity:

White uniformity is defined as the following with five measurements ($A \sim E$).

$$\delta w = \frac{\text{Maximum Luminance of five points (brightness)}}{\text{Minimum Luminance of five points (brightness)}}$$

10. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling. Observe all other precautionary requirements in handling components.
- h) This module has its circuit board on the rear side and shoud be handled carefully in order not to be stressed.
- i) The polarizer surface on the panel is treated with Anti-Glare for low reflection. In case of attaching protective board over the LCD, be careful about the optical interface fringe etc. which degrades display quality.
- j) Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment.
- k) There are high voltage portions on the backlight and very dangerous. Careless touch may lead to electrical shock. When exchange lamps or service, turn off the power without tail.
- 1) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m) Cold cathode fluorescent lamp in LCD panel contains a small amount of mercury, please follow local ordinances or regulations for disposal.

11. Packing form

Product countries / Areas	JAPAN	TAIWAN	CHINA					
Piling number of cartons	maximum 6 curtons							
Package quantity in one carton	20 modules							
Carton size	724 × 650 × 203(H)							
Total mass of one carton filled with full modules		13kg						
Packing form	Refer to figure.3							

12.Reliability test items

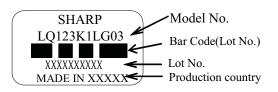
	condomity test items		
No.	Test item	Conditions	Remark
1	High temperature storage test	Ta=75°C 240h	[Note 1]
2	Low temperature storage test	Ta=-30°C 240h	[Note 1]
3	High temperature	Ta=40°C;95%RH 240h	[Note 1]
	& high humidity operation test	(No condensation)	[Note 1]
4	High temperature operation test	Tp(Panel surface)=75°C 240h	[Note 1]
5	Low temperature operation test	Ta=0°C 240h	[Note 1]
6	Vibration test	Frequency: 10 to 57Hz/Vibration width (one side): 0.075mm	
	(non- operating)	: 57 to 500Hz/Gravity: 9.8m/s ² Sweep time: 11 minutes Test period: 3 hours (1 hour for each direction of X,Y,Z)	[Note 1] [Note 2]
7	Shock test (non- operating)	Max. gravity: 490m/s^2 Pulse width: 11ms, half sine wave Direction: $\pm X, \pm Y, \pm Z$ once for each direction.	[Note 1] [Note 2]
8	ESD test	Contact discharge $(150 pF 330 \Omega)$ non-operating = $\pm 10 kV$, operating = $\pm 8 kV$ Atmospheric discharge $(150 pF 330 \Omega)$ non-operating = $\pm 20 kV$, operating = $\pm 15 kV$ Terminal discharge $(200 pF 0 \Omega)$ Each terminal One time $\pm 200 V$	[Note 1]
9	Thermal shock test (non- operating)	Ta=-30°C to 70°C; 50 cycles (1 hour for each temperature)	[Note 1]

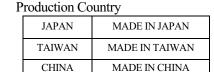
[Note 1]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function. (normal operation state: Temperature:15 to 35° C, Humidity:45 to 75%, Atmospheric pressure:86 to 106kpa)

[Note 2]

A gap of panel shall not occur by vibration or the shock

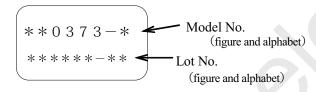

13.Others


1) Lot No. and indication Bar Code Label:

A) Module serial label

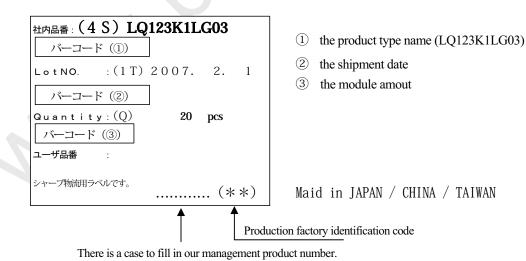
Global LCD Panel Exchange Center

The label that displays SHARP, product type name (LQ123K1LG03), the manufacturer's serial number and producing country is stuck on the back of the module.



How to express Lot No. (figure and alphabet) 00000 Producting year (the last figures of the Christian Era) Serial No Producting month($1\sim 9,X,Y,Z$) Production factory identification code In-house management product number

B) Backlight serial label


The label that displays the product type name and the manufacturer's serial number for the backlight is stuck on the back of the module.

2) Packing box display

1) the product type name (LQ123K1LG03), 2) the shipment date and 3) the module amount are displayed in the display column in the packing box.

(Moreover, the bar code display also applies to this.)

(ex. LQ123K1LG03A)

- 3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 4) Disassembling the module can cause permanent damage and should be strictly avoided.
- 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 6) The chemical compound which causes the destruction of ozone layer is not being used.
- 7) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury, Please follow local ordinances or regulations for disposal. (put on the back of the module.)
 - COLD CATHODE FLUORESCENT LAMP IN LCD PANEL CONTAINS A SMALL AMOUNT OF MERCURY, PLEASE FOLLOW LOCAL ORDINANCES OR REGULATIONS FOR DISPOSAL.
 - ・当該液晶ディスプレーパネルは蛍光管が組込まれていますので、地方自 冶体の条例、または、規則に従って廃棄してください。
- 8) When any question or issue occurs, it shall be solved by mutual discussion.
- 9) Please refer to Figure 4 for the assembly form of the module, and refer to Figure 5 for lot No. of the back of the module.
- **R.C. (RoHS Compliance) means these parts have corresponded with the RoHS directive.

Internal Use Only R. C.

14. Carton storage condition

Temperature 0°C to 40°C Humidity 95%RH or less

Reference condition : 20°C to 35°C , 85%RH or less (summer)

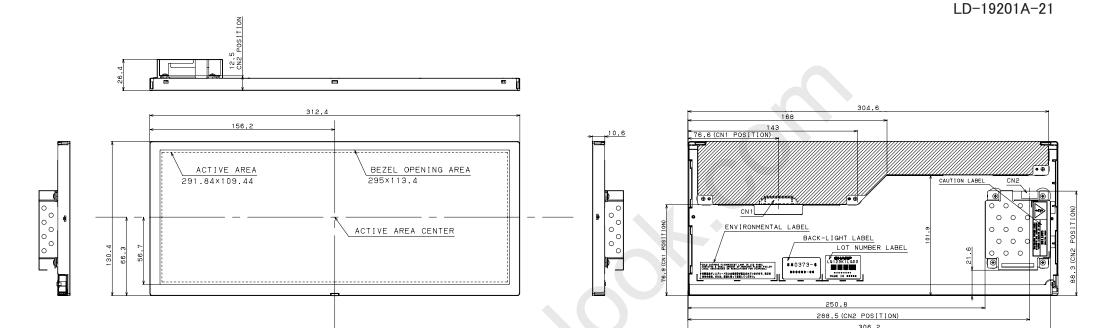
 5° C to 15° C , 85%RH or less (winter)

• the total storage time $(40^{\circ}\text{C},95\%\text{RH})$: 240H or less

Sunlight Be sure to shelter a product from the direct sunlight.

Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or

wires must not be detected.


Notes Be sure to put cartons on palette or base, don't put it on floor, and store them with

removing from wall

Please take care of ventilation in storehouse and around cartons, and control

changing temperature is within limits of natural environment

Storage period 1 year or less

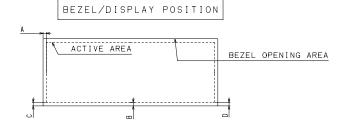
www.panelook.com

INTERFACE CONNECTOR

CN1:DF14H-20P-1.25H

PIN LAYOUT (20PIN)

pin	1	2	3	4	5	6	7
	vcc	VCC	GND	GND	RxINO-	R x I N 0 +	GND
8	9	10	11	12	13	1.4	15
R x I N 1 -	R×IN1+	GND	R×IN2-	R×IN2+	GND	CK IN-	CK IN+
16	17	1.8	19	20			
GND	R×IN3-	R x 1 N 3 +	RL/UD	SELLVDS			


CORRESPONDING CONNECTOR: [DF14-20S-1, 25C (CONNECTOR)] [DF14-2628SCFA (TERMINAL)]

INVERTOR CONNECTOR CN2: S6B-ZR-SM4A-TF(LF)(SN)

PIN LAYOUT

pin	1	2	3
	VDD	VDD	VDD
4	5	6	
GND	GND	Vdim	

CORRESPONDING CONNECTOR: [ZHR-6 (JST)]

- 1) TOLERANCE X-DIRECTION A:1.6±0.8
- 2) TOLERANCE Y-DIRECTION B:2,0±0,8
- 3) OBLIQUITY OF DISPLAY AREA |C-D|<0.8

NOTES

- 1. UNSPECIFIED TOLERANCE TO BE ±0,5
- 2. WARP AND FLATING FOR PCB AND CHASSIS ARE EXCLUDED FROM THICKNESS AND DIMENSION OF THE UNIT.

91. OUTLINE DIMENSIONS LQ123K1LG03

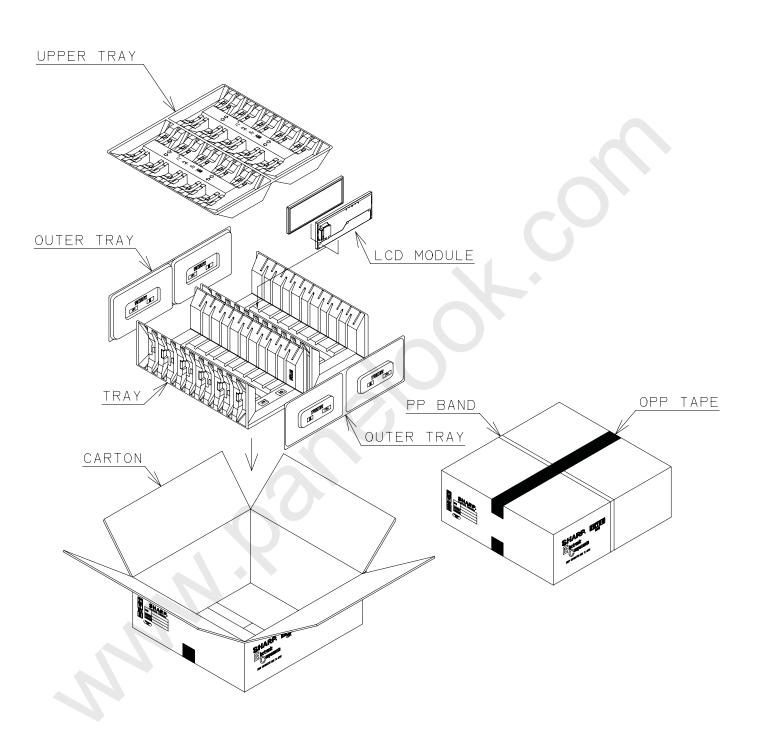


FIG3.PACKING FORM

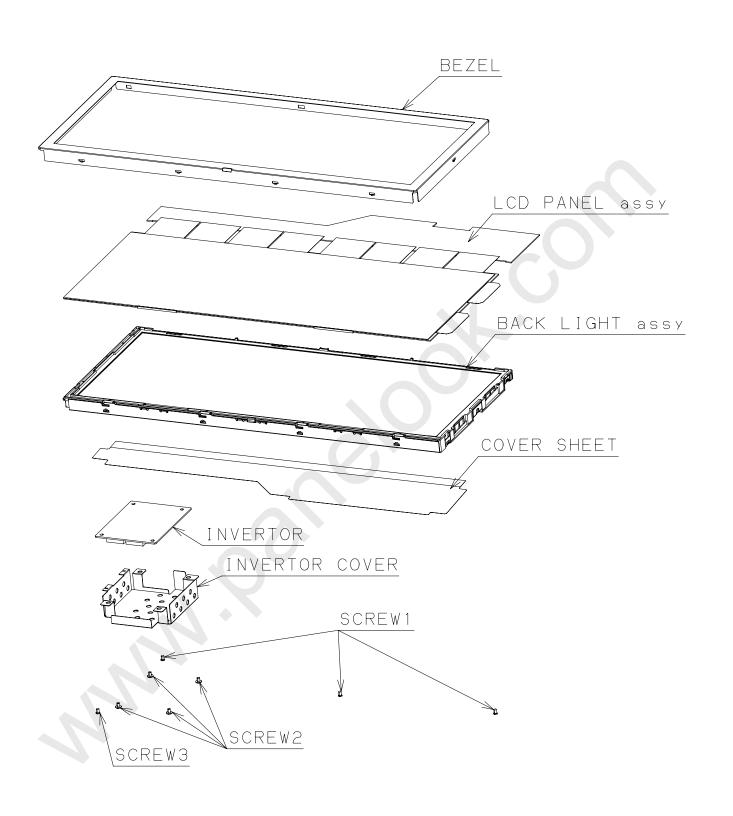


FIG4. Module Diagram

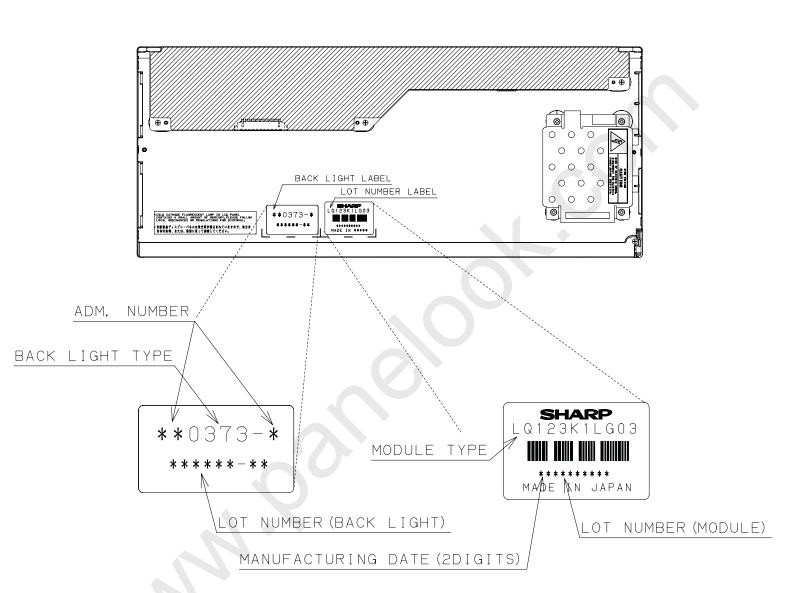


FIG5.LOT NUMBER